
Partition complexity in a network of chaotic elements

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 2107

(http://iopscience.iop.org/0305-4470/24/9/020)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 14:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 24 (1991) 2107-2119. Printed in the UK 

Partition complexity in a network of chaotic elements 

Kunihiko Kaneko 
Department of Pure and Applied Sciences, College of ARs and Sciences, University Of 
Tokyo, Komaha, Meguro-ku, Tokyo 153, Japan 

Received 5 November 1990, in final form 3 January 1991 

Abstnd. A network of chaotic elements is investigated with the use of globally cnupled 
maps. Elements can split into clusters with synchronized oscillation. In a partially ordered 
phase, the clustering has an inhomogeneous tree S ~ N C ~ U E  like replica symmetry breaking 
in spin glass. The clustering has large variety by attractors and strongly depends on initial 
conditions. Variety of elusterings is characterized by the distribution of partitions originated 
in spin glass theory. Qualitative similarity and quantitative disagreement of our attractors 
with spin glass are clarified. 

1. Introduction 

Studies of networks of chaotic elements [1-4] have been growing as a novel paradigm 
for complex dynamical systems covering neurodynamics [5-81, fluid dynamics, con- 
densed matter such as the Josephson junction array and charge density wave [3,4], 
optics [9, lo], evolution dynamics [11] and economics. Among these studies, the 
'globally coupled map' (GCM) [ I ,  21 plays a similar important role as the Shemngton- 
Kirkpatrick (SK) model played for the spin glass [12]. 

Here we study the simplest model for network of chaotic elements. It is given by 

where n is a discrete time step and i is the index for the elements (i  = 1,2 , .  . . , N = 
system size). We choose here the logistic map f ( x )  = 1 -ax*, as the simplest model 
for globally coupled chaotic systems. 

The model corresponds to a mean-field version of coupled map lattices (CML), 
originally proposed as a prototype model for spatio-temporal chaos 113-161. Our 
dynamics (1) consists of a parallel nonlinear transformation and a feedback from the 
'mean field'. 

An important notion in globally coupled dynamical systems is clustering. After our 
system falls on an attractor, elements x, , ( i )  split into clusters. Here, elements belonging 
to the same cluster L take exactly an identical value Xn(L). This variable X.(L) can 
change in time, but the clustering condition itself is invariant after our system falls on 
an attractor. Clustering is characterized by the number of clusters k and the number 
of elements in each cluster, given by I N , ,  N I , .  . . Nk](Xf=, N, = N ) .  

As has been studied in previous papers [ 1,2], there are four phases for our model: 
(i) coherent phase, where a single synchronized attractor (k = 1) occupies all basin 
volumes; (ii) ordered phase, where attractors with a small number of clusters 
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( k  = o( N ) )  occupy basin volumes; (iii) partially ordered (PO) phase, or intermittency 
phaset, where a variety of attractors with different clusterings coexist-some have a 
large number of clusters, while others have few; (iv) turbulent phase, where all elements 
are completely desynchronized ( k  = N). 

At the po phase, our system has many attractors with different clusterings. There 
are a variety of attractors with different ways of partition of N elements. This partition 
complexity reminds us of the studies in spin glass (SK model) [17,18]. Demda has 
found universality in this partition complexity, with the use of a distribution function 
of partitions. We study this distribution in our system. 

The paper is organized as follows. In section 2, we introduce some quantifiers to 
characterize the partition complexity, borrowing from the spin glass problem. The 
quantifiers include the distribution of cluster numbers and the probability that two 
elements fall on the same cluster. 

i n  section 3, numefical results of these quantitien are presented with the emphasis 
on the enhancement of fluctuation of partition complexity at the PO phase. The 
distribution of partition complexity has qualitative similarity with the spin glass, 
although the strength of fluctuation quantitatively differs from the universal form for 
spin glass. Section 4 is devoted to discussions and summary. 

2. Distribution of partitions: definition 

In the partially ordered phase, the partition by [ N,, . . . , Nk] is strongly non-uniform, 
as has also been seen in the spin glass [12], random energy model, random maps, and 
fracture [ IQ In this PO phase, there are many attractors with different ways of partition 

distribution sampled from many initial conditions. Since the clustering characteristics 
(k, [NI, . . . , N J )  has too much information, we study only the distribution of following 
reduced quantities, derived from the above characteristics. 

(1) Cluster number k, or scaled cluster number c = k / N :  Q ( c ) ,  the distribution of 
c, is calculated from sampling over many initial conditions. From Q ( c ) ,  average cluster 
number ratio (c) and_ its variance { ( C - ( C ) ! ~ )  derived, which wiI! be studied in detail, 

(2) Partition variety X To study the non-uniformity of partitions we use the quantity 
Y = ,ZJ-,(N,/N)2, first introduced in the spin glass 112, 17, 181. Y gives the probability 
that two arbitrarily chosen elements fall on the same cluster, for a given attractor. 

The probability distribution v(  Y) is calculated from an ensemble of randomly 
chosen initial conditions. This probability v(  Y )  gives complexity of partition into 
clusters. If attractors with nearly equal partition to M clusters occupy a large basin 
volume, v(  Y) has a large peak slightly above Y = I / M .  Again, we will study the 
average (Y)  and the variance ((SY)’)=(( Y- (Y)) ’ )  in detail. 

Before showing numerical results, let us briefly look back at the spin glass. In the 
spin glass, Y is defined as the probability that two arbitrarily chosen initial conditions 
fall on an identical metastable state. The initial conditions are chosen from all possible 
2 N  bit configurations. The distribution v( U) is introduced as the distribution of Y 

t In our model, the PO and intermittency phases are identical. When we emphasize a dynamical nature, if 
is called intermittency as in the previous paper [I]. Otherwise we call it the w phase here. In the previous 
study the PO phase exists also as a ’glassy’ state, at a region between the coherent and ordered phases. 
Recent numerical studies, however, suggest that this glassy behaviour may be a very long transient [19], 
which will not be discussed here. 

to dl?S!PTS (k, [ N i ,  . . . , . N. . X , , .  11 Tn - -  C P P  the ...- varbtv .-..-., nf -. the ...- rlurterinm D _ ,  we m ~ i r i i r e  -..--I-.- jl ” rlirctpr -.-I.-. 
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Figure 1. Scaled average cluster number (e) as a function of 4 for e =0.1. N = 100 (0). 
N = 2 0 0 ( 0 ) ,  N=400 (A), and N=800 (XI. All numerical resultsthroughout the present 
paper (figures 1-10) are obtained from 5000 randomly chosen initial configurations, and 
after discarding 40 000 steps as transients. To check the accuracy we have sometimes carried 
out a few N ~ S  for different sets of initial conditions, where more than one mark is overlaid. 
( 0 )  Normal plot; ( b )  semi-log plat. 

over different samples, with different sets of random couplings. It is shown that ((ay)*) 
remains finite even in the limit N - r q  (not ‘self-averaging’). Furthermore, there is a 
universai reiationship ((8uj’j =g(i kjj=f(k>(i  - ( n j  j i i j .  Some other exampies iike 
random maps, random energy models, and so on also give the same or close relationship 
between ((ay)*) and (Y) [18,20].  
Our partition variety Y and ?r( Y) are extended from the above definitions for spin 

glass. Instead of ‘two initial conditions’ in spin glass we take two elements x ( i ) .  In 
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Figure 1. Variance of scaled cluster number ((Sc)') as a function of a, for e=o. i .  
N=lOO(O) ,N=200(0 ) ,  N=400(A),and N=800(x ) . (o )  Normalplat:(b)semi-lag 
plot. 

our case, the sampling is taken over all initial conditions rather than a different choice 
of couplings. These revisions of definitions are rather natural, since our model does 
not include extrinsic randomness, but creates randomness through chaos, which can 
differ by initial conditions. 

3. Numerical results for the distribution of partitions 

To study the partition complexity in PO phase, we have performed two sets of numerical 
simulations, changing the nonlinearity a. For the first set, the couplings is fixed at 
E = 0.1, while for the latter, it is fixed at E = 0.2. 
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NwreL Rababilitydistribution ofpartitions w( Y), calculated from 5000 randamlychasen 
initial conditions. E = 0.1, and N =200. (e) (I = 1.6; ( b )  a = 1.62; (e) n = 1.64; ( d )  D = 1.66; 
(e) a = 1.68. 

For E = 0.1, successive transitions occur at a = a c ( € )  = 1.655 (ordered+ Po), and at 
a = 1.70 (m+turbulent) [l]. From the distribution Q ( c ) ,  we measure (e) and ((SC)~), 
as are plotted in figures 1 and 2. In the ordered phase, both (c) and ( ( 8 ~ ) ~ )  decrease 
towards zero in proportion to 1/N. 

On the other hand, both ( e )  and ( ( 8 ~ ) ~ )  seem to approach N-independent values 
for large N, in the Po phase. The enhancement of fluctuation is clearly seen at the 
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Flgure 3. (continued) 

transition from the ordered to PO phase (see figure 2 ( b ) ) .  In the turbulent phase, ( c )  = 1, 
and ((Sc)*)=O, since all elements take different values, leading to Q ( c )  = S ( c -  1).  

The distribution of partition variety v(  Y )  is plotted in figure 3 for a = 1.6, 1.62, 
1.64, 1.66, 1.68, and E = 0.1. As a is increased, peaks located slightly above 1/ M appear 
successively with increasing M (  = 4 , 5 , 6 , .  . . ). These peaks have left endpoints at 1/M 
and correspond to M-cluster attractors. The shapes of ?r( Y )  at Y = 1.66 and 1.68 have 
similarity with those for SK models and random maps [la], since both have many 
peaks with left endpoint at 1/M, and also a broadband spectrum down to Y =O. As 
a is increased further, thepeak at Y =l /N=O grows (see figure 3(e)), until w ( Y )  
approaches S( Y - 1/ N )  + 6( Y), at the turbulent phase. 
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The average (Y) and variance ( (SY)')=(Y')-(  Y)' are plotted in figures 4 and 5.  
In the ordered phase, (Y)  is independent of N, while ((SY)') seems to decrease towards 
zero with the increasing of N. In the PO phase, both seem to approach N-independent 
y.l~pc. 'I?..e enhancement of fluctuation is again clear. In the turbulent phase, both 
quantifiers approach zero. 

These numerical results are summarized as follows. 
(1) The fluctuation ((SY)') increases as the parameter approaches oc, the transition 

point from the ordered to the PO phase. Thus initial condition dependence of partitions 
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Figure 6. ( (6Y)')  as a function of (U), for ~ = 0 . 1 .  N=100 (O), N = 2 0 0  (0). N=400 
(A),  and N = 8 0 0  (x). 

is enhanced near a =a.. Some initial conditions lead to attractors with many small 
c!??sterr, while some others lead to those with few, large clusters. The enhancement of 
fluctuation near a =a. reflects on this increase of variety of partitions. 

(2) In the ordered phase, the fluctuation decreases slowly with the size N. This 
decreasing is roughly fitted by N-' with a power p(O<p < l), which depends on a. 

(3) In the PO phase, it seems that the fluctuation does not decrease with the system 
size. In other words, the fluctuation is not self-averaging in the PO phase, as is also 
found in spin-glass problems. 
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1 

Figure 7. Scaled average duster number ( e )  as a function of  a. for E = 0.2. N = 
N = 2 0 0  (U), and N=400 (A). 

: 100 (O), 

(4) On figure 6, we have plotted ((SY)') as a function of (Y). In the PO phase 
( O s ( Y ) s  Yc=O.l), it seems that our data for different sizes hit on a single curve. 
Since our PO phase exists up to (Y) = Y, where ((ay)') dies out, it is impossible to fit 
our curve by the universal functional form f( Y)(1-( Y ) )  for the SK model. However, 
our curve is not too far from the form f(  Y)( 1 -( Y)/ YJ,  which is obtained by replacing 
the original term ( l - ( Y ) )  by ( 1  - ( Y ) / Y J ,  so that the fluctuation dies out at the 
transition to the ordered phase (( Y) = Y,). The form of our curve suggests a possible 
similarity to our PO phase with the spin glass, even though it does not quantitatively 
belong to the same universality as the spin glass. 

For E =0.2, the transition from the ordered to PO phase occurs at a=a ,=1 .9 .  
Numerical results for the partition complexity are shown in figures 7-10. Most of our 
conclusions induced from the case with E = 0.1 are again confirmed, with the following 
exceptions. - 

(1) It seems that ((SY)') does not decrease with N even in the ordered phase. This 
remnant fluctuation comes from a nature of the ordered phase here. For E = 0.2, the 
basin splits into attractors with the cluster numbers 2 and 3 ( Q ( c )  has peaks at 2 / N  
and 3 / N ) .  Both types of attractors have large basin volumes even in the limit of large 
N, while the cluster number distribution concentrates on k = 5 at the ordered phase 
for ~ = 0 . 1  near a=a,. 

( 2 )  The fluctuation ((SY)') is much smaller than that for E = 0.1. Numerically it is 
not easy to get a clear curve for (( SY)') as a function of ( Y). The origin of this reduction 
of fluctuation is not as yet clear, although its enhancement near a = ac is again clearly 
seen. 

. .. . . - . 

4. Summary and discussion 

It is found that there remains a finite fluctuation of partition into clusters, in the 
partially ordered (or intermittency) phase in globally coupled chaos. In table 1, 
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0 

Figure 8. Variance of scaled cluster number ( (se) ' )  as a function of a, for e=O.2. 
N = 100 (O), N = 200 (0). and N =400 (A). ( 0 )  Normal plot; ( b )  semi-log plot. 

summarized, is the change of the distribution of partitions with the three phases of 
the globally coupled chaos. 

The similarity of our-globally coupled--map with the spin glass is clarified. It was 
first noticed in an inhomogeneous tree structure in the clustering [ 11. Both in the spin 
glass and in our system, variety of partition is found for a metastable state or for an 
attractor respectively, as is quantified by the distribution of cluster number and of the 
partition variety Y. In our partially ordered phase, the fluctuation is not self-averaging; 
it does not decay with N, as is also known in the spin glass. 

Quantitative deviation from spin glass universality is noted. In our system, random- 
ness is created only through our chaotic dynamics. Qualitatively, this randomness leads 

. .  
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0 

Figure 9. ( Y) as a function of a, for E = 0.2. N = LOO (0). N = ZOO (U), and N = 400 (A). 

0 

Figure 10. ((ay)') as a function of a, for c=O.2. N =  LOO (0). N =ZOO (O), and 
N=400 (A). 

to a similar partition complexity as extrinsic randomness, but the quantitative univer- 
sality no longer holdst. 

Inhomogeneous partition leads to a step-like structure of Lyapunov spectra. 
Lyapunov spectra give how a small disturbance is amplified or reduced. They are 
averaged logarithms of the eigenvalues of a long-time product of Jacobi matrices 
Jn(i, j) = ( l - ~ ) f ' ( x . ( i ) ) 6 ~ , ~ + ( ~ / N ) f ' ( x , ( j ) ) .  Ifoursystemfallsona k-clusterattractor 

t This kind of quantitative non-universality may be common in a coupled chaotic system. See [ZI] for 
non-universality in spatio-temporal intermittency. 
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Table 1. Features of phases characterized by quantifiers 

Ordered Partially ordered Turbulent 

Q ( C )  ( c ) a l l N + O  (4 independent of N ( 4 - 1  

n( Y) (U) independent of N ( U) independent of N (W=O 

( ( s c ) * ) a  l / N  - 0  ((Se)’) independent of N ( (8c)2)-  0 

((SY)’)-O with N ((8Y)‘)  independent of N ((SY)*).;O 
or indepenent of N no universal relation between 

((SI’)’) and (n 

with the partition [ N I ,  NI,. . . , Nk], the above matrix also splits into k clusters with 
the same partition. In a typical inhomogeneous clustering, the partition consists of a 
structure with successively smaller Nks, like the form Nk = N x2-*. This structure of 
the matrix reminds us of the replica symmetry breaking matrix by Parisi [12]. 

To study the dynamical nature of clusterings, precision-dependent clusterings will 
be useful [l], where the condition for a cluster is not an exact identity but an identity 
within a given precision. Two elements i and j are said to belong to the same 
precision-dependent cluster if they are equal within the precision P. The precision- 
dependent clustering can change in time. With a finite precision P, we measure the 
clustering and its corresponding Y value. These quantities can change in time and 
depend on the precision P. By introducing the distribution of Y over a long time, 
temporal complexity of partition can be measured for a given attractor. This dynamical 
complexity will be reported elsewhere. 

So far, there is no theory for the statistical mechanics of our globally coupled 
chaotic system, comparable to the spin glass theory. Construction of it is a future 
important problem, to open a field for dynamical complexity with large degrees of 
freedom. 
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